Resilience Breeding for Food Security

Dr. Shahid Mansoor, Sitara-e-Imtiaz

HEC Distinguished National Professor Fellow Pakistan Academy of Sciences Member Prime Minister Task Force on Science and Technology Focal Person Biotechnology, PM Task Force on Knowledge Based Economy

DIRECTOR

National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan

Agriculture, Pakistan and Food Security

- GDP Share 25%
- Labour 48%
- Export Earnings >80%

Agriculture Dynamics

Food security

- Self sufficient in cereals, sugar, fruits, vegetables
- Importer of edible oil, pulses, cotton, tea, dry milk
 Nutritional security
- Around 50% population suffers nutritional deficiency
- Nearly 44% children are stunted

Challenges

- Population
- Water
- Climate change
- Land
- Pest and diseases
- Salinity and water logging

Ρορι	latio	n Growth
1951	\rightarrow	41 million
2012	\rightarrow	185 million
2030	\rightarrow	261 million

How to Enhance Agriculture Productivity in climate change scenario?

Management

May involve huge cost

Genetic gain

Less cost but needs very strong knowledge base Major increase in yield came through improved genetics, often termed as **'genetic gain'**

Historically major increase in wheat, corn, milk, meat and eggs through genetic gain

The rate of genetic gain is slow; requires new technologies


Challenges in GM crops; Only cotton is commercialized

- Regulatory frame work
- Trade issues
- Public acceptance
 Perception from Europe vs North America/South America

Cotton, oilseed crops, sugar and low lignin trees accepted

The way out for developing world

- Education of policy makers/masses
- Genomics assisted breeding/speed breeding
- New breeding technologies

New breeding technologies

New breeding technologies (NBTs) include

Genome editing/engineering technologies

a) zinc finger nucleases

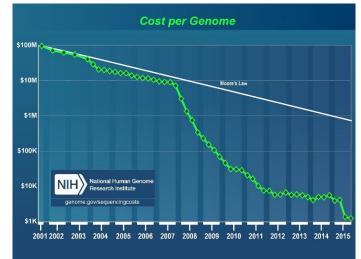
b) transcriptional activator-like nucleases

c) clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated Cas9 systems
d) Modified CRISPR/Cas9 for nucleotide change
without DNA cutting

Applications in food crops

- Rice; yield, better grain, nutritional value, herbicide tolerance
- Potato; virus resistance, sweetening control, stress tolerance
- Wheat; yield, disease resistance, nutritional value
- Cotton; disease resistance, better quality, nutritional value
- Oilseed crops; higher yield, better quality, nutritional value

Genomics; a silent revolution


Major improvements in sequencing technologies

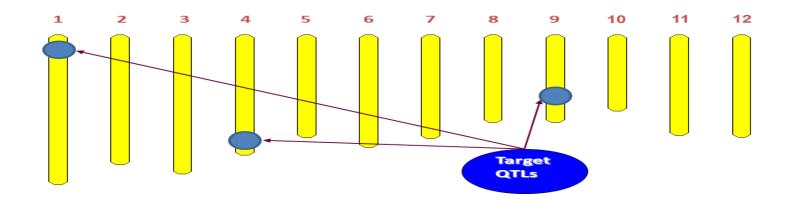
All major crops/livestock have been sequenced

- DNA based marker technologies
- Genotyping by sequencing (GBS);
- Automated phenotyping
- Bioinformatics; Our ability to handle genomic data

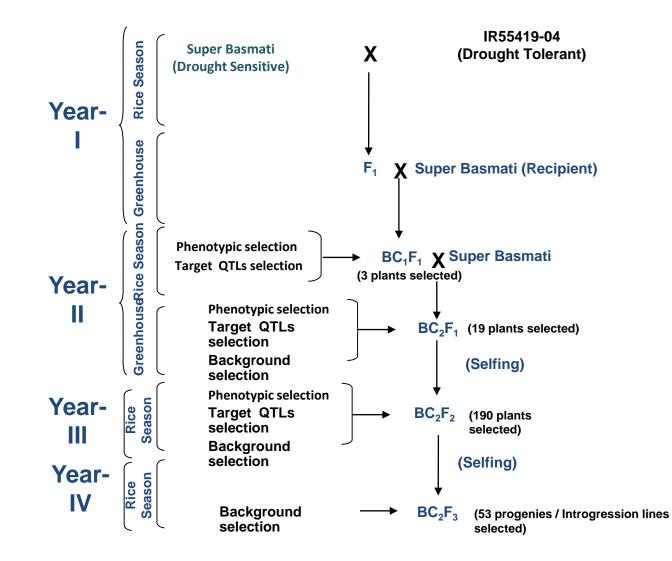
Applications

- Genome sequencing of important livestock breeds and crops
- Platform for genomic selection in livestock and plants
- Genome sequencing of microbes selected as microbial factories

New initiatives food security; applications of biotechnology in livestock and poultry sector

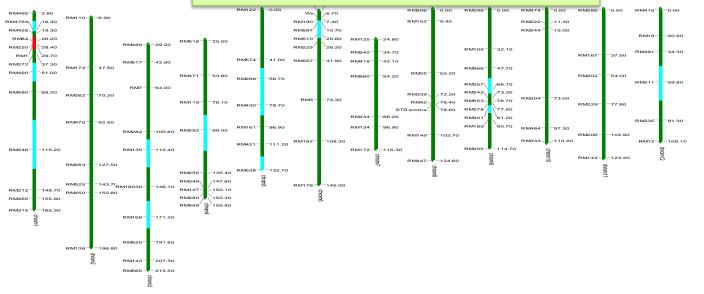

- Constitute around 60% of agriculture
- 2.3 trillion Dollar Halal market
- 10-15% growth rate
- Potential to control nutritional deficiency and stunting
- Application of genomics can double milk yield in ten years

Success stories


Introgression of Drought Tolerant QTLs/genes in Basmati Rice: A Molecular Breeding Approach

Drought tolerant QTLs used for Introgression through Marker Assisted Backcrossing

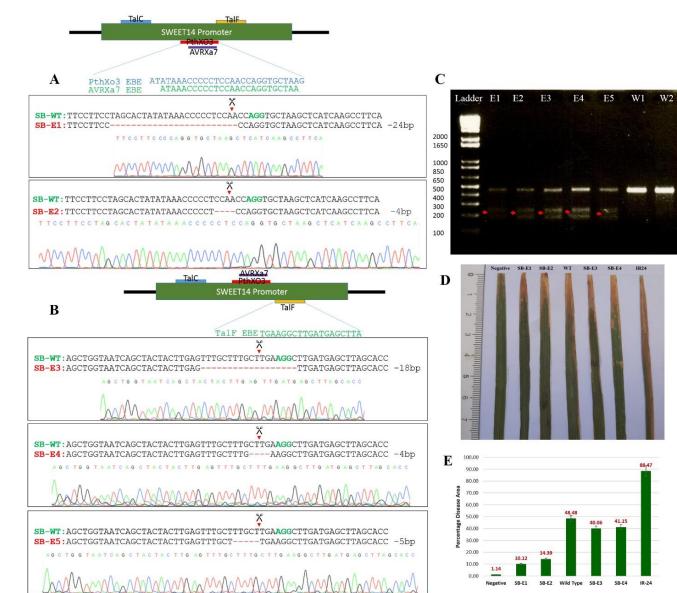
Chromosome	Linked /	QTL	Reference
	selectable		
	marker(s)		
1	RM84	Osmotic adjustment	Robin et al., 2003
	RM220		(IR622/IR600 QTL 2003)
4	RM559	deep root dry weight;	IGCN ZYQ18/JX17 DH QTL 1998;
		drought tolerance	TTU IR58821/IR52561 QTL 2002
9	RM201,	Maximum Root length;	IR64/Azucena DH
	RM242	Root thickness , Relative	Courtius et al, 2000
		water content	Price et al, 2002
			Steele et al., 2006
			Chaitra et al., 2006


Schematic summary of procedures for introgression of drought tolerant QTLs in Basmati background

Traits		DTIL60	Super Basmati	
Plant height (cr	n)	111.3	118.8	4
Maturity Days		138.3	143.9	1
1000 grain wt (g)	20.7	21.5	The second
Paddy Yield	Well Watered	3466	3735	A.I.
(Kg ha⁻¹)	Stress	1628*	1186	
	% Reduction	55.1	68.2 IR55419-04	•
Grain dimensio	ons Length	7.0	7.5 6.4	
(mm)	Width	1.7	1.8 2.3	
	Thickness	1.5	1.5 1.67	New York

Field Performance of DT Introgression Line – DTIL60

Genome Recovery = 92.9%



31-Dec-14

Success story; genome editing in rice for bacterial blight resistance in Super basmati

- SWEET14 is a major susceptibility gene because majority of geographically distant Xoo strains target SWEET 14
- The effector binding elements of 4 TALENS are present in the promoter of this gene
- These TALENs are AVRXa7, PthXO3, TalC and Tal 5
- We designed 3 gRNAs targeting these 4 TALENS (AVRXa7 and PthXO3 are overlapping)
- We were successful in getting

Biofertilizers; reduce chemical fertilizers by 25%

Next generation Biofertilizers

Value additions, e.g., biopesticides, growth promoting hormones, P- solubilization, insecticide and herbicide

degradation, new carrier material

Way forward

Coating on chemical fertilizers

New technologies for future investment

- New breeding technologies (genome editing, CRISPR), speed breeding
- Genomics in improvement of crops, livestock and human health
- Minimize use of chemical fertilizers/pesticides
- Applications of automated phenotyping/satellite imaging
- Microbial technologies
- Synthetic biology

Collaboration

- Rothamsted
- John Innes Centre
- NIAB, Cambridge
- University of Bangor
- Pirbright

Thanks