

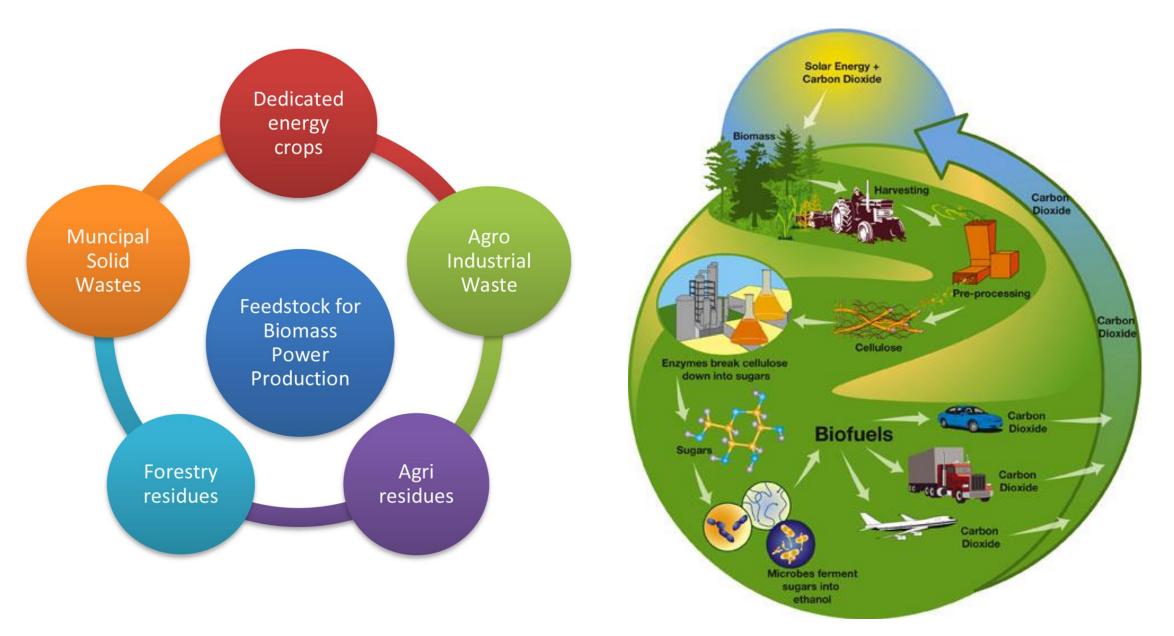
BIOMASS DERIVED ENERGY POTENTIAL IN PAKISTAN

Dr Muhammad Saghir

Smart Energy Network Demonstrator (SEND) Project Officer

M.Saghir@keele.ac.uk

Keele University (UK)


11th March 2020

Introduction

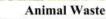
- Biomass types
- Biomass value addition chain
- Challenges with biomass
- Biomass energy potential
- Advantages of <u>bioenergy</u>
- State of the art and polygeneration
- Conclusion

Biomass Power

Types of Biomass

- Current uses for animal feed and fodder,
- Paper mills, paper and cardboard
- Bagasse for co-combustion in boilers in some sugar mills for power
- Low value end uses from selected materials
- Plenty of surplus biomass for energy and other products
- Perfect for rural development and electrifying the rural areas
- Farmers will be energy and food producers
- More jobs in rural than urban areas
- All kinds of wastes such as agro, industrial, MSW, forestry, plastic wastes can be used efficiently

Agricultural crops waste

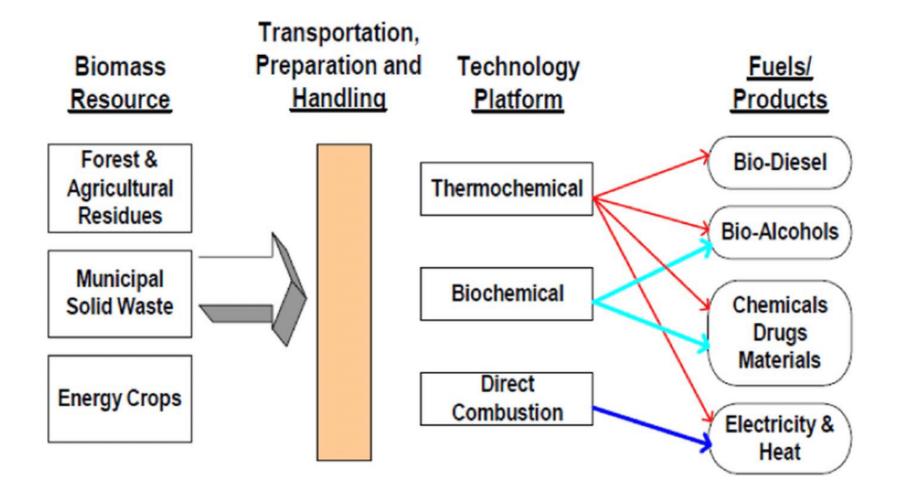


Forest wood Residue

Municipal Solid Waste

Challenges with biomass

- Operational
- Low density
- Low dispersion
- Weak supply chains
- Regional and seasonal availability
- Inefficient conversion technologies (traditionally)
- Economical
- Feedstock costs variations
- High risk due to financing, insurance etc
- Social
- Competition for uses (food vs fuel)
- Land use
- Environmental nutrient/soil depletion
- Regulatory
- Policies Subsidies to make it competitive with conventional technologies
- Systems no specific rules to regulate the work of utilization of biomass resource
- Regulations no special mechanism to manage the development of biomass resources industry



Biomass to Energy

Biomass type	Quantities	Energy potential
Crop Processing Residues (Wheat, cotton, rice, sugar, Maize)	25.3 million tonnes/year	62,785 GWh/year of thermal energy
Crop Harvesting residues	114 million tonnes/year	456,440 GWh/year of thermal energy
Animal manures for biogas	368,000 tonnes/year	24,000 GWh/year
Municipal Solid wastes	23,360 tonnes/year	152,000 GWh/year

Bioenergy Pathways

Technology selection

Process type	Working temperature	Feedstock quality	End product(s)	ß
Anaerobic Digestion & Fermentation	Ambient temperature	Uses mostly wet material with high proteins, saccharides and sugars content	Biogas (CO2 + Methane) Bio-alcohols	
Pyrolysis	300-650 Celsius Under no oxygen condition	Can use complex residues, low calorific value, low ash melting point, high ash containing materials	Biochar Bio-Oil Syngas	
Gasification	>800 Celsius Partial oxidation	Can use a variety of materials but limited to high ash melting point materials	Syngas for engines to make power, heating and cooling	
Combustion	>800 Celsius Full oxidation	Same as above	Heat to steam to electrical power	
Trans- esterification	65 Celsius	Uses waste plant oils and fats	Biodiesel as diesel fuel replacement	tiodiese!

PRODUCTS

 Densification by pelletisation or briquetting to increase energy density

Pellets, briquettes for cement kilns, brick kilns, textile industry and paper mills

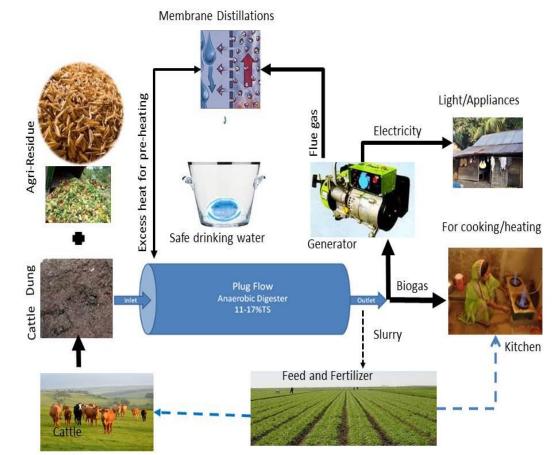
• ATC – Pyrolysis

Biocarbons, bio-coal, (charcoal) activated carbons, bio-oil, biochar, syngas

Gasification –

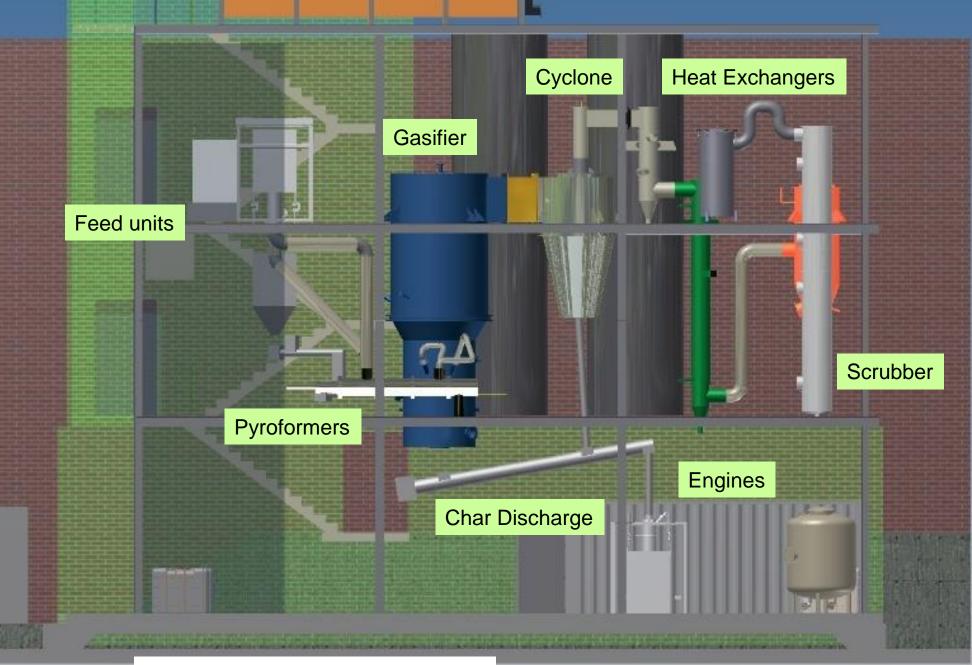
Syngas to engines or fuelcell (SOFC) for electricity, heating and cooling

• Anaerobic Digestion

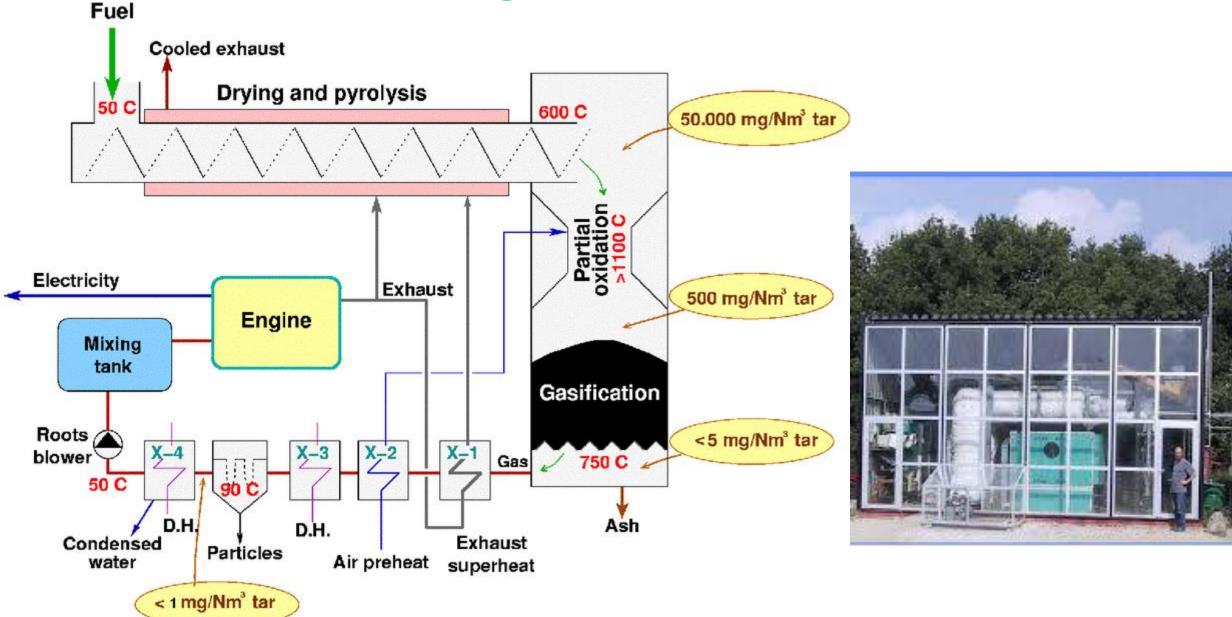

Biogas, bio-CNG

- Biofuels Biodiesel, Bio-jetfuel, Bio-gasoline
- Others Biopolymers, Bioplastics, Biocomposites, 3D printing resins

Polygeneration


- Waste can be converted into electricity, heat and cooling
- Gasification of municipal solid , commercial and industrial wastes can be a good option for rural areas
- At the same time cooling from heat recovery by adsorption/absorption technologies can be beneficial for greenhouses and livestock farms etc
- Waste resources can be best used in coastal, rural and remote areas for agriculture and horticulture development
- Biochar application in agriculture can increase crop yields more than 30% and in some case can double the yield if used smartly

Integrated systems for electricity, cooking gas and safe drinking water production *Picture: Mainali B.*


State of the art – Pyrogasification

- State of the art technology in development to use complex and mixed waste residues to produce uniform quality clean syngas and char
- Syngas can then be used in the engines (generators) to produce electricity and at the same time by recovering heat we have heating or cooling also available
- Combined energy efficiency greater than 50% and up to 80% which is nearly double than conventional technologies
- Waste minimisation greater than 95% thus no more waste management issues

1.4 MW Pyrogasification system

Viking Gasifier

High value products from biomass and other wastes

- Bioenergy production at low carbon footprint
- Activated carbon for industrial applications
- Biocomposite materials wood plastic composites
- Biochar for agriculture and horticulture
- Biochar is solid residue of biomass pyrolysis and is an excellent bio fertiliser
- Waste to energy and then water desalination
- Waste to energy (electricity and cooling) from one process
- Waste based integrated processes best suited for remote locations where there is electricity and heating or cooling demand exists such as farms, warehouses, greenhouses, airports, plants, hospitals etc

Conclusion

- Bioenergy is ideal for an Pakistan as an agrarian country
- Rural development and biomass value addition
- Advanced thermochemical conversion ideal for complex residues
- Feedstock flexibility and end product diversity can be highly beneficial
- Huge bioenergy potential in Pakistan
- Needs supporting policies for wider deployment in Pakistan to address SDGs