Development of affordable glycoconjugate vaccines for livestock to reduce food cost and improve food security

Brendan Wren London School of Hygiene & Tropical Medicine

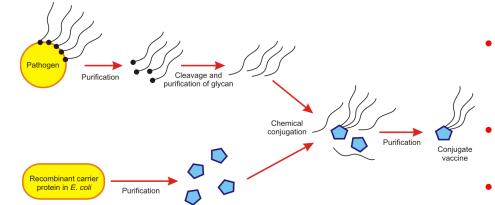
Better affordable livestock vaccines means

Improved food security, productivity, nutrition, sustainability, And contributes to one health, addressing zoonosis, Etc.

Glycoconjugate-based vaccines

Polysaccharide-based vaccines produce a T-cell independent immune response with IgM that opsonises bacteria.

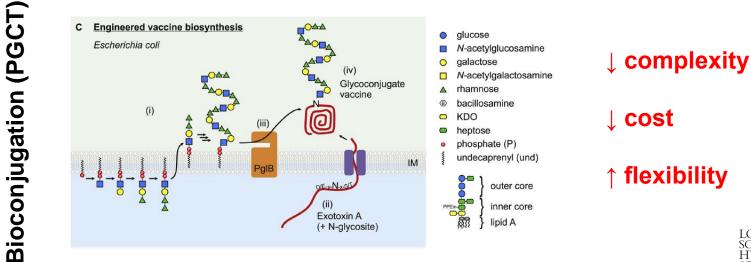
To convert to a more favourable T-cell dependent response polysaccharides are often conjugated to proteins


Examples of successful human glycoconjugate vaccines

- 1. Haemophilus influenzae
- 2. Neisseria meningitidis (except type B)
- 3. Streptococcus pneumoniae (some serotypes)

Long lasting immunity & suitable for infants and elderly Billion doses given per year! Not used for animals?

Traditional chemical conjugation v bioconjugation

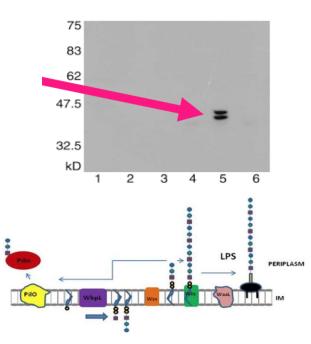


Chemical

Multistep procedure
> 300 quality control steps.

Expensive

Product often heterologous

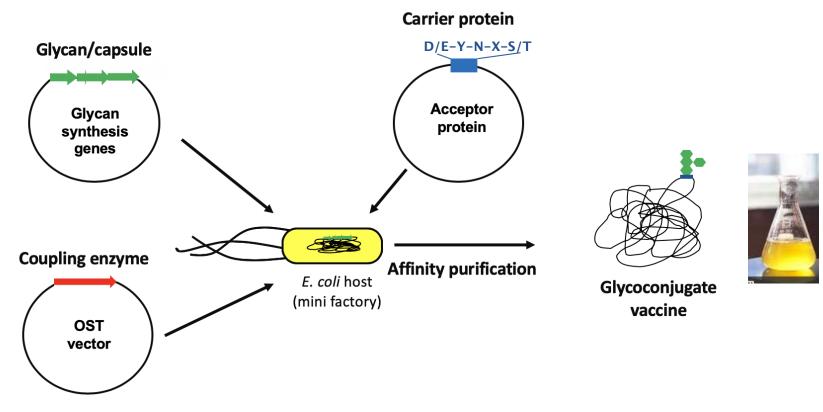


The genesis of bacterial glycoengineering

- 1. Discovery of *Campylobacter N*-linked glycosylation system (Parkhill *et al.* Nature 2001)
- 2. Functional transfer of glycosylation system into *E. coli* (Wacker *et al.* Science 2002)
- 3. Coupling of capsules and O-antigen to proteins in *E. coli* (Feldman *et al.* PNAS 2005)

New glyoengineering processes

- Glycan Expression Technology (GET)
- Protein Glycan Coupling Technology (PGCT)
- Glycan Seeking Technology (GST)



PalB

Stage 2. Protein Glycan Coupling Technology (bioconjugation)

PGCT allows the bioconjugation of selected glycans to chosen acceptor proteins

Recombinant approach in *E. coli* - one step purification procedure

Flexibility of mixing & matching of protein/glycan combinations

Current status - producing an inexpensive recombinant glycoconjugate vaccine in 3 easy steps

1. DNA synthesise target protein with glycotags and target glycan

2. Add DNA encoding protein and glycan to *E. coli* cells expressing coupling enzyme on chromosome

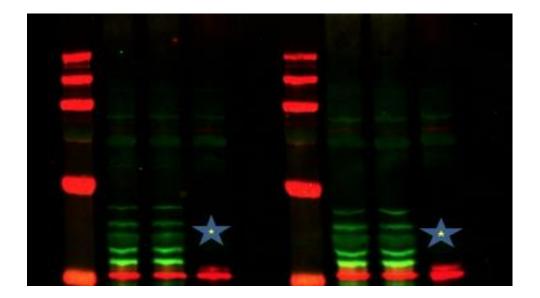
3. Grow *E. coli* and purify vaccine from column

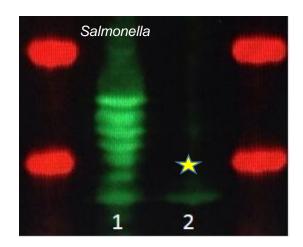
Current recombinant glycoconjugate vaccines

- 1. Improving existing glycoconjugate vaccines Eg Streptococcus pneumoniae
- 2. New vaccines

Eg Francisella tularensis, Burkholderia pseudomallei, Coxiella burnetii, Clostridium difficile, Brucella species, Group A Strep, Shigella species, para typhi and Traveller's diarrhea

3. New markets


Eg Poultry and pig glycoconjugate vaccines Glycoconjugate vaccine have not been used in animals?



Glycoengineering for veterinary vaccines

 Triple poultry vaccine – Campy glycan coupled to perfringens protein in attenuated E. coli or Salmonella strain

Glycoengineering for veterinary vaccines

2. Dual pig vaccine – *Strep suis* capsule coupled to *Actinobacillus pleuropnemoniae* toxin

3. Dual bovine vaccine – Coxiella O-antigen coupled to epsilon perfringens toxin?

Or Brucella O-antigen coupled to Coxiella carrier protein candidate

BBSRC £5 million multicentre Lola grant

LSHTM spin out – ArcVax (animal vaccines)

Conclusions and future perspectives

Basic curiosity driven research can lead to practical applications

- 1. In-exhaustible and homogeneous supply of vaccine low cost
- 2. Versatile technology coupling glycans with carrier proteins
- 3. "Double-hit" vaccines (eg S. suis protein with S. suis capsule)
- 4. Piggy back onto existing attenuated vaccines for multiple protection
- 5. Animal vaccines, not just for animal health & economic prosperity, but blocking zoonotic infections reduces human disease (One Health)
- 6. Better vaccines (humans and animals), less antibiotic use

Glycobod team

