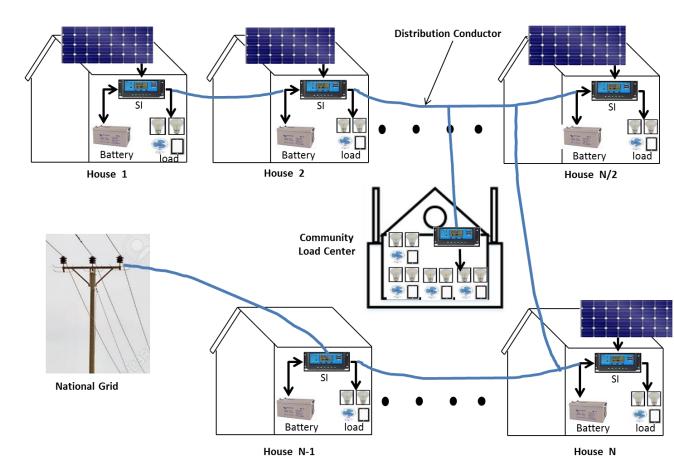


Microgrids for Energy Beyond Subsistence

Nauman Zaffar

Overview

- ~ 40-50 million people in Pakistan (23-25%) and further 1.1 billion
 - Not just for convenience
 - Beyond Subsistence Value addition using energy
 - To become contributing members of the community
- Urban Electrification particularly in an intermittent grid environment
- What will it take?
 - Generation Renewable, distributed and grid-connected as needed
 - Loads Control of dynamics and efficiency considerations
 - Storage Capacity, Life, Power density, Energy density, optimal operation and LCOE
 - Interconnectivity Scalability and stability in standalone and inter-connected systems


What is Needed

- An Architecture having
 - Low Cost Deployment
 - Lower Distribution and Conversion Losses
 - Higher End to End Efficiency
 - Reliability
 - Scalability
 - Resource Sharing Feature
 - Capability to Drive High Power Communal Load

An architecture with above characteristics is an **Electrification Architecture** that can provide **beyond subsistence level power provisioning** and can genuinely contribute towards the **socio-economic uplift of the society** through **creation of an Energy Micro-Economy**

Architecture

- Distributed Generation Distributed Storage Architecture (DGDSA)
- Peer-to-peer sharing of electricity High upfront and recurring cost
- A Self-Sustaining Network based upon Renewable Energy Mix (Solar PV, Wind, Bio-Energy and Micro-Hydro
 - Nanogrid (Household) as a basic building block
 - Each Nanogrid has its own generation, battery storage and connected with bus
 - Each nanogrid can work independently, islandedmode, as well as in coordination
 - Bidirectional power flow capability is realized via bidirectional converters
 - Decentralized Control on actual power delivery

Energy Provisioning Beyond Subsistence

Comparison

Type of Solution			Opt	ion				
Utility (National) Grid				А			oility	E
Standalone Solar				В			Viab	B
Diesel Generators				С			Economic Viability	
Commercial Microgrid Solutions				D			Econ	
ENERNET (proposed)				<u>E</u>				C
Other Aspects	Α	В	С	D	E		-	1 2 3 4 5
Scalability	Low	Low	Low	Low	High	Typical Power	Details	Power Provisioning (levels)
Modularity	Med.	Low	Low	High	High	Provisioning (levels)		
Utilization Efficiency	High	Low	Low	Med.	High	1	Light/mobile phone charging up to 8 hrs a day	
Communal Loads	High	Low	High	Low	High	2	24/7 Light/mobile charging	
Potential for Energy Micro-economy	Low	Med.	High	High	High	3	Light(s) + mobile charging + house loads (Fans etc.)	
Potential for Poverty alleviation	High	Med.	Low	Low	High	4	Light(s) + mobile charging + Fan(s) + larger communal loads	
Legal Challenges	Low	Med.	Low	Med.	Med.	5	All loads (including industrial)	

Energy Provisioning Beyond Subsistence

Generation Mix

- Generation and
 Integration Renewables
 - Hydrokinetics
 - Micro-Hydro
 - Wind
 - Scalable Solar
 - Bio-Energy

Energy Provisioning Beyond Subsistence

Load Control

- Loads with networked VFDs provide multiple advantages.
 - Current spike at turn-on is eliminated.
 - Multiple standalone units can be integrated over a network and controlled centrally.
 - This allows possibility of integration with CentralSystem for:
 - * Smarter control.
 - ✤ Implementation of Micro-Grid wide energy policy.
 - Customization of operational control for contingencies.
 - "True" econo-mode operation can be enabled depending on the system load capability.
 - All of this at the price of a voltage stabilizer!

Energy Storage Systems

- Commercial batteries
 - Lead-acid
 - Lithium-Ion
- Price and energy density of Li-ion batteries following a steep and favorable trajectory
- High priced solutions such as Tesla Powerwall at \$400/kWh still 10X better than Lead-acid
- 2.8 million UPS systems with a \$1.2Billion market for storage
- Enable central control of Li-ion batteries

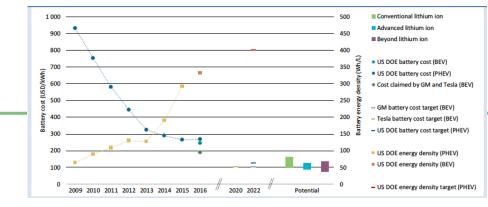
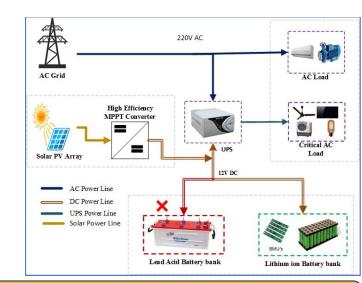



Table 1: Voltage, Energy density and Cycle Life of Batteries [14, 17]

Battery Type	Voltage/cell (V)	Energy Density (Wh/Kg)	Cycle Life
Lead-Acid	2.1	35	800
Nickel-Cadmium	1.3	35	700 - 2000
Nickel-MH	1.2	75	600-1000
Lithium Ion	2.5 - 4.5	150	1200
High T-sodium	2.1	170	1800

Transdisciplinary ...

- Data Analytics
- System Design
- GIS Mapping
- Energy Micro-Economy
- Social Scientists and Environmental Impacts
- Legal